Podrobný minimální sylabus

přednášek Lineární algebra I a II pro informatiky

Jiří Matoušek ve spolupráci s Jiřím Rohnem, Jiřím Tůmou a Jiřím Fialou

Verze: září 2005

Předmluva

Lineární algebra je jedním ze základních kamenů pro jakékoli vážně míněné studium matematiky, informatiky, fyziky i inženýrských oborů.

Kromě konkrétních poznatků byste se měli také přiučit logickému uvažování a vyjadřování obvyklému v matematice. Lineární algebra je nejspíš první axiomaticky budovaná teorie, s níž se setkáváte. Její základní objekt studia, tzv. vektorový prostor, je definován několika vlastnostmi (axiomy), z nichž se logicky odvozuje vše ostatní. Trochu podobně, jako se v pravidlech šachu neříká, jak má vypadat figurka jezdce, ale jenom jak smí tahat, v definici vektorového prostoru se neříká, co je to vektor či jak vypadá, nýbrž jenom podle jakých pravidel se s vektory počítá. Vybudovanou teorii můžeme pak použít na řadu konkrétních objektů, zdánlivě navzájem velmi odlišných.

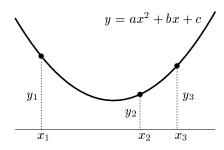
Takto jsou vystavěna i jiná odvětví matematiky, ale lineární algebra je poměrně jednoduchá a rozvíjení matematické teorie se na ní dá zvlášť dobře ilustrovat. Časem můžete ocenit i sílu této teorie: otázky o lineárních rovnicích, které jsou na první pohled zapeklité a bez přípravy těžko řešitelné i pro lidi matematicky velmi talentované, bude po zvládnutí základů lineární algebry snadné zodpovědět.

Tento spisek je na studium lineární algebry příliš stručný a nejsou v něm skoro žádné důkazy. Určitě sám o sobě **nestačí na přípravu ke zkoušce!** Může být ale užitečný pro zopakování látky a kontrolu, že jste nic důležitého nepřeskočili.

Nedávno byla na MFF UK přednáška Lineární algebra pro první ročník rozšířena o téma lineární programování. Tuto část sylabus záměrně nezahrnuje, protože koncepce její výuky zatím není ustálena.

1 Soustavy lineárních rovnic

1. Příklad: proložení grafu kvadratické funkce (tvaru $y = ax^2 + bx + c$) danými třemi body vede na soustavu 3 lineárních rovnic o 3 neznámých.

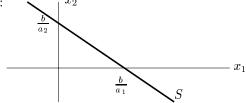


2. Rovnice $a_1x_1 + a_2x_2 = b$ (1 rovnice, 2 neznámé): množina řešení

$$S = \{(x_1, x_2) \in \mathbb{R}^2 : a_1 x_1 + a_2 x_2 = b\}.$$

Zde \mathbb{R}^2 je množina všech uspořádaných dvojic (x,y), kde x,y jsou reálná čísla. Uspořádané dvojice, trojice, n-tice reálných čísel budeme nazývat **vektory**. (Obšírněji se někdy říká $aritmetické\ vektory$, protože se uvažují i jiné druhy vektorů.)

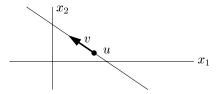
3. Geometricky odpovídá množina řešení přímce v rovině (pokud a_1 a a_2 nejsou obě rovna 0!): $\searrow \quad | \quad x_2 \mid$



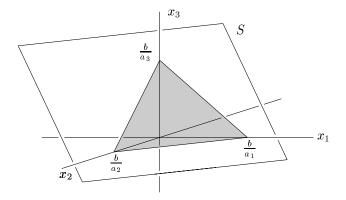
Jiný způsob vyjádření téže množiny (parametrický zápis):

$$S = \{ \mathbf{u} + t\mathbf{v} : t \in \mathbb{R} \},\$$

kde **u** a **v** jsou vhodné vektory z \mathbb{R}^2 .



4. Podobně: množina řešení jedné lineární rovnice o 3 neznámých tvaru $a_1x_1 + a_2x_2 + a_3x_3 = b$ geometricky odpovídá rovině v \mathbb{R}^3 (pokud a_1 , a_2 , a_3 nejsou zároveň rovna 0).



Lze ji zapsat také v parametrickém tvaru

$$\{\mathbf{u} + s\mathbf{v} + t\mathbf{w} : s, t \in \mathbb{R}\}$$

pro vhodné vektory $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ (ukážeme později). Řešíme-li soustavu k takových rovnic, hledáme průnik k rovin v \mathbb{R}^3 .

5. Obecně uvažujeme soustavu mlineárních rovnic o nneznámých tvaru

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

(první index je vždy pro řádek!!). Přehlednější zápis téže soustavy:

$$A\mathbf{x} = \mathbf{b}$$
,

kde

- A je **matice soustavy** (matice s m řádky a n sloupci, neboli matice typu $m \times n$, kde v i-tém řádku a j-tém sloupci je a_{ij}),
- **b** je sloupcový vektor pravých stran, tj. matice typu $m \times 1$,
- \mathbf{x} je sloupcový vektor neznámých, tj. matice typu $n \times 1$.

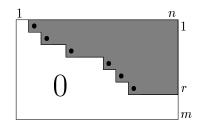
Zápis $A\mathbf{x}$ na levé straně je $součin\ matic$. Obecně bude součin matic definován později.

2 Řešení soustav: Gaussova eliminační metoda

- 6. Elementární řádkové úpravy matice:
 - (a) vynásobení i-tého řádku nenulovým číslem t,
 - (b) přičtení j-tého řádku k i-tému řádku, $i \neq j$.

Pomocí operací (a) a (b) lze simulovat i operace

- (b') přičtení t-násobku j-tého řádku k i-tému řádku, $i \neq j$ a
- (c) záměna dvou řádků.
- 7. Rozšířená matice soustavy $A\mathbf{x} = \mathbf{b}$ je matice $(A|\mathbf{b})$, t.j. matice A, k níž je zprava připsán sloupec \mathbf{b} . Tvrzení: elementární řádkové úpravy rozšířené matice nemění množinu řešení soustavy.
- 8. **Odstupňovaný tvar matice** A: existuje číslo r, $0 \le r \le m$, tak že řádky $1, 2, \ldots, r$ jsou nenulové, řádky $r + 1, \ldots, m$ jsou nulové, a je-li $j(i) = \min\{j : a_{ij} \ne 0\}$, pak $j(1) < j(2) < \cdots < j(r)$. (Obšírněji by se mohlo říkat řádkově odstupňovaný tvar matice, poněvadž analogicky se dá definovat i sloupcově odstupňovaný tvar. My o něm ale mluvit nebudeme a spokojíme se tedy s kratším termínem.)



Na obrázku vyznačují puntíky nenulové prvky na místech $(i, j(i)), i = 1, 2, \ldots, r$; těm se někdy říká **pivoty**.

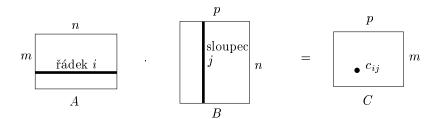
- 9. **Gaussova eliminace:** algoritmus pro úpravu dané matice A na odstupňovaný tvar elementárními řádkovými úpravami.
- 10. Řešení soustavy $A\mathbf{x} = \mathbf{b}$ eliminací: matice A se převede na odstupňovaný tvar, přitom se všechny řádkové úpravy aplikují na celou rozšířenou matici. Jak vypadají řešení soustavy, jejíž matice A je v odstupňovaném tvaru? Jestliže b_{r+1}, \ldots, b_m nejsou všechna 0, pak žádné řešení, jinak se všechna řešení dostanou tak, že neznámé x_j ve sloupcích neobsahujících pivot (těch je n-r) se zvolí libovolně, a zbývajících r neznámých se dopočítá (jednoznačně). Speciálně pro r=n je právě jedno řešení.
- 11. Numerické záležitosti, špatně podmíněné matice (maličká změna matice způsobí obrovskou změnu řešení). Příklad (2×2), geometrická interpretace (skoro rovnoběžné přímky).

3 Operace s maticemi, speciální typy matic

- 12. Součet matic (stejného typu!) po složkách, násobení reálným číslem po složkách.
- 13. Transponovaná matice A^T : prvek a_{ij} přijde na pozici (j,i). Symetrická matice: čtvercová (tj. $n \times n$), $A^T = A$.
- 14. **Jednotková matice** I_n (čtvercová, jedničky v pozicích (i, i), i = 1, 2, ..., nuly všude jinde).

- 15. Matice A je **diagonální**, pokud má nenulové prvky pouze na hlavní diagonále, tj. $a_{ij} = 0$ pro všechna $i \neq j$.
- 16. **Násobení matic:** součin AB není definován pro libovolné dvě matice A a B, ale jen pokud počet sloupců A je roven počtu řádků B, tj. A je typu $m \times n$ a B je typu $n \times p$. Součin AB je pak matice C typu $m \times p$, kde

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$



Ověřit: $AI_n = I_m A = A$, pro libovolnou A typu $m \times n$.

- 17. Násobení a transpozice: $(AB)^T = B^TA^T$ (přesněji: součin AB je definován, právě když je definován součin B^TA^T , a v takovém případě platí uvedená rovnost podobné poznámky se vztahují i k rovnostem mezi maticemi v dalším textu.)
- 18. Distributivita: A(B+C) = AB + AC, a podobně zprava.
- 19. Násobení matic je asociativní.
- 20. Nechť A je matice typu $n \times n$. Matice B je **inverzní** k A, pokud $AB = I_n$. (Pozor, o inverzní matici mluvíme pouze u čtvercových matic!) Inverzní matici, pokud existuje, značíme A^{-1} .
- 21. Které matice mají inverzní matici? V odpovědi se potřebuje následující pojem: Čtvercová matice A se nazývá **regulární**, pokud soustava $A\mathbf{x} = \mathbf{0}$ má jediné řešení (tj. $\mathbf{x} = \mathbf{0}$).
- 22. Věta: Matice A typu $n \times n$ má inverzní matici, právě když je regulární. V takovém případě je inverzní matice určena jednoznačně, a platí $AA^{-1} = A^{-1}A = I_n$, tj. inverzní matice je inverzní zleva i zprava.
- 23. V důkazu i na jiné věci se hodí tvrzení: Matice je regulární \Leftrightarrow v (nějakém) odstupňovaném tvaru platí $r=n \Leftrightarrow$ soustava $A\mathbf{x}=\mathbf{b}$ má právě jedno řešení pro každé \mathbf{b} .
- 24. Násobení a inverze: $(AB)^{-1} = B^{-1}A^{-1}$ (jako u transpozice).
- 25. Výpočet inverzní matice: Utvoříme matici $(A|I_n)$ a řádkovými úpravami ji převedeme na tvar $(I_n|B)$ (když to jde), pak $B=A^{-1}$. Když to nejde, je A singulární.

4 Tělesa (v algebře)

- 26. S racionálními, reálnými, komplexními čísly můžeme dělat "čtyři základní početní úkony"; máme operace sčítání a násobení a odvozené (inverzní) operace odčítání a dělení.
- 27. Těleso je algebraická struktura, v níž jsou definovány operace s podobnými vlastnostmi (a s jejímiž prvky tudíž můžeme "počítat" podobně jako s reálnými čísly).
- 28. Je-li X nějaká množina, **binární operace** na X je libovolné zobrazení $X \times X \to X$. Neformálně, binární operace přiřazuje každým dvěma prvkům $a, b \in X$ prvek z X, což je výsledek té operace provedené na a a b. Příklad: násobení reálných čísel je binární operace na \mathbb{R} ; dělení není binární operace na \mathbb{R} , ale je to binární operace na $\mathbb{R} \setminus \{0\}$.
- 29. Těleso definujeme *axiomy*, tj. vlastnostmi, které musí příslušné operace splňovat.
- 30. **Těleso** je množina K spolu se dvěma binárními operacemi + (sčítání) a · (násobení), splňujícími následující axiomy:
 - (SK) Sčítání je komutativní, tj. a + b = b + a pro každé $a, b \in \mathbb{K}$.
 - (SA) Sčítání je asociativní, tj. a+(b+c)=(a+b)+c pro každé $a,b,c\in\mathbb{K}$.
 - (S0) Existuje **neutrální** (nulový) prvek 0 vzhledem ke sčítání, pro nějž platí a+0=a pro každé $a\in\mathbb{K}$.
 - (SI) Pro každé $a \in \mathbb{K}$ existuje **opačný** prvek b, pro nějž a+b=0. Takový prvek b (o němž se ukáže, že je určen jednoznačně) se zpravidla značí -a.
 - (NK) Násobení je komutativní, tj. $a\cdot b = b\cdot a$ pro každé $a,b\in\mathbb{K}$
 - (NA) Násobení je asociativní, tj. $a\cdot (b\cdot c)=(a\cdot b)\cdot c$ pro každé $a,b,c\in\mathbb{K}$
 - (N1) Existuje **jednotkový** prvek 1 vzhledem k násobení, pro nějž platí $1 \cdot a = a$ pro každé $a \in \mathbb{K}$ různé od 0.
 - (NI) Pro každé $a \in \mathbb{K}$ různé od 0 existuje **inverzní** prvek b, pro nějž $a \cdot b = 1$. Takový prvek b (o němž se ukáže, že je určen jednoznačně) se zpravidla značí a^{-1} .
 - (D) Násobení je **distributivní** vzhledem ke sčítání, tj. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ pro všechna $a, b, c \in \mathbb{K}$.
 - $(01) 0 \neq 1.$

Pozor, definice tělesa v sobě skrývá též požadavek, že kdykoli $a,b\in\mathbb{K}$, pak také $a+b\in\mathbb{K}$ a $a\cdot b\in\mathbb{K}$.

Součin $a \cdot b$ zapisujeme většinou jen ab. Odčítání definujeme a-b=a+(-b), a dělení $a/b=a \cdot b^{-1}$.

To, čemu zde říkáme těleso, se někdy obšírněji nazývá komutativní těleso, a uvažují se též tělesa nekomutativní, jež nemusí splňovat axiom (NK). Zde budeme tělesem rozumět jen komutativní těleso.

- 31. Tvrzení o násobení matic, inverzních maticích, řešení soustav lineárních rovnic platí, i když místo reálných čísel pracujeme s libovolným jiným tělesem. Vše je třeba řádně dokázat z axiomů (a ničeho jiného!!!). Pro představu několik jednoduchých tvrzeníček; např. jednoznačnost 0, 1, jednoznačnost -a, a^{-1} , $0 \cdot a = 0$, $(-1) \cdot a = -a$, "krácení" (z a + b = a + c plyne b = c, z $a \cdot b = a \cdot c$ plyne b = c pro nenulové a).
- 32. Příklady těles: racionální čísla \mathbb{Q} , reálná čísla \mathbb{R} , komplexní čísla \mathbb{C} , dvouprvkové \mathbb{Z}_2 . Exotičtější: $\mathbb{R}(x)$ prvky jsou všechny racionální funkce p(x)/q(x), kde p(x) a q(x) jsou mnohočleny s reálnými koeficienty.
- 33. Značení \mathbb{Z}_n (zbytkové třídy modulo n, reprezentované čísly $0, 1, \ldots, n-1$, s operacemi sčítání a násobení modulo n). \mathbb{Z}_3 je těleso, \mathbb{Z}_4 NENÍ!!!
- 34. Tvrzení: \mathbb{Z}_n je těleso právě když n je prvočíslo. Princip důkazu: Je-li n složené, tvaru $n = k\ell$, pak zbytkové třídy k a ℓ jsou dělitelé nuly, tj. jejich součin je 0 v \mathbb{Z}_n . Je-li n prvočíslo, stačí ukázat, že pro každé nenulové $\ell \in \mathbb{Z}_n$ je zobrazení "násobení ℓ ": $\mathbb{Z}_n \to \mathbb{Z}_n$ surjektivní (na). Trik: ověřit injektivitu (prostost).
- 35. Označení: GF(q) konečné těleso s q prvky (Galois Field) pokud existuje. Existuje právě když q je mocnina prvočísla, a pak existuje právě 1 (bez důkazu). Konečná tělesa jsou velmi významná pro informatiku (např. pro kódy, třeba na CD nebo DVD).
- 36. Charakteristika tělesa: nejmenší $n \geq 1$ takové, že

$$\underbrace{1+1+\cdots+1}_{n-\text{krát}}=0,$$

nebo 0 pokud takové nnení. Tvrzeníčko: charakteristika je vždy prvočíslo nebo 0.

5 Vektorové prostory

- 37. Zatím pro nás vektory byly uspořádané n-tice reálných čísel, tvaru $\mathbf{v} = (v_1, \dots, v_n)$, žijící v \mathbb{R}^n (kartézský součin n kopií \mathbb{R} , např. \mathbb{R}^2 popisuje rovinu). Můžeme je sčítat, a také násobit reálným číslem. Podobně jako jsme reálná čísla pomocí axiomů zobecnili na tělesa, zobecníme \mathbb{R}^n pomocí axiomů na tzv. vektorový prostor.
- 38. Dá se říct, že lineární algebra je studium vektorových prostorů. Budeme-li mluvit o vektorových prostorech, můžete si vždy představovat \mathbb{R}^2 , \mathbb{R}^3 a obecně \mathbb{R}^n jako základní (a nejdůležitější) příklady.

- 39. **Vektorový prostor** nad tělesem \mathbb{K} je množina V (prvky = **vektory**) s binární operací + (sčítání vektorů) a operací · (násobení vektoru skalárem z tělesa \mathbb{K} ; je to zobrazení $\mathbb{K} \times V \to V$), splňující následující axiomy:
 - (SK) Sčítání vektorů je komutativní, tj. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ pro každé $\mathbf{u}, \mathbf{v} \in V$.
 - (SA) Sčítání vektorů je asociativní, tj. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ pro každé $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
 - (S0) Existuje **neutrální** (nulový) prvek $\mathbf{0} \in V$ vzhledem ke sčítání vektorů, pro nějž platí $\mathbf{v} + \mathbf{0} = \mathbf{v}$ pro každé $\mathbf{v} \in V$. [Pozor, máme teď dvě (různé) 0 jednu v \mathbb{K} a jednu (tučnou) ve V!!!]
 - (SI) Pro každé $\mathbf{v} \in V$ existuje opačný vektor $-\mathbf{v}$, pro nějž $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
 - (NA) Násobení vektoru skalárem je "asociativní", tj. $a \cdot (b \cdot \mathbf{v}) = (a \cdot b) \cdot \mathbf{v}$ pro každé $a, b \in \mathbb{K}$ a každé $\mathbf{v} \in V$.
 - (N1) Platí $1 \cdot \mathbf{v} = \mathbf{v}$ pro každé nenulové $\mathbf{v} \in V$ (kde $1 \in \mathbb{K}$ je jednotkový prvek tělesa).
 - (D1) Platí takováto distributivita: $(a + b) \cdot \mathbf{v} = (a \cdot \mathbf{v}) + (b \cdot \mathbf{v})$, pro každé $a, b \in \mathbb{K}$ a každé $\mathbf{v} \in V$,
 - (D2) a taky takováhle distributivita: $a \cdot (\mathbf{u} + \mathbf{v}) = (a \cdot \mathbf{u}) + (a \cdot \mathbf{v})$, pro každé $a \in \mathbb{K}$ a každé $\mathbf{u}, \mathbf{v} \in V$.

Všimněte si, že kdykoli $\mathbf{u}, \mathbf{v} \in V$ a $a \in \mathbb{K}$, požadujeme též $\mathbf{u} + \mathbf{v} \in V$ a $a\mathbf{v} \in V$.

40. Příklady:

- {**0**} (triviální vektorový prostor).
- \mathbb{K}^n (aritmetický vektorový prostor dimenze n nad \mathbb{K}) pro libovolné těleso \mathbb{K} .
- Množina všech matic typu 7×11 s prvky z \mathbb{K} (nebo nějakého jiného pevně zvoleného typu $m \times n$).
- $\mathbb{R}[x]$ (všechny polynomy s reálnými koeficienty).
- Polynomy stupně nejvýš 293 s reálnými koeficienty (nebo jiného daného maximálního stupně).
- Množina všech podmnožin množiny X jako vektorový prostor nad GF(2) (sčítání = symetrická diference množin).
- Množina všech funkcí $\mathbb{R} \to \mathbb{R}$ ((f+g)(x) = f(x)+g(x) atd.), podobně množina všech spojitých funkcí $\mathbb{R} \to \mathbb{R}$ či všech diferencovatelných funkcí $\mathbb{R} \to \mathbb{R}$.
- Exotický příklad: $\mathbb R$ (reálná čísla) jako vektorový prostor nad $\mathbb Q$ (rac. čísly).
- 41. Tvrzeníčka o vektorových prostorech: $0\mathbf{x} = \mathbf{0}$, $(-1)\mathbf{x} = -\mathbf{x}$, $a\mathbf{x} = \mathbf{0}$ právě když a = 0 nebo $\mathbf{x} = \mathbf{0}$.

- 42. **Podprostor** vektorového prostoru V je podmnožina $W \subseteq V$, která je vektorovým prostorem vzhledem k $\mathbf{0}$, "+" a "·" zděděným z V. Tj. platí $\mathbf{0} \in W$, $\mathbf{u} + \mathbf{v} \in W$ pro libovolná $\mathbf{u}, \mathbf{v} \in W$, a také $a\mathbf{v} \in W$ pro libovolné $a \in \mathbb{K}$ a libovolné $\mathbf{v} \in W$.
- 43. Příklad: vektorové podprostory \mathbb{R}^2 jsou (geometricky) počátek, celé \mathbb{R}^2 , a každá přímka procházející počátkem (ověříme později).
- 44. Pozorování: průnik libovolného souboru podprostorů vektorového prostoru V je opět podprostor. Definice: Je-li X podmnožina vektorového prostoru V, **podprostor generovaný** X je průnik všech podprostorů W, které X obsahují. Označení: $\mathrm{span}(X)$ (v literatuře též $\langle X \rangle$, $\mathcal{L}(X)$, [X], název též **lineární obal** X).
- 45. Jsou-li $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ vektory, každý výraz $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n$, kde $a_i \in \mathbb{K}$, se nazývá **lineární kombinace v**₁, ..., **v**_n (v lineární kombinaci máme vždy konečný počet vektorů!). Vektor **0** považujeme za lineární kombinaci prázdného systému vektorů. Tvrzení (explicitní popis podprostoru generovaného X): span(X) je množina všech lineárních kombinací vektorů z X.
- 46. Buď A matice typu $m \times n$. Vektorové prostory s ní spojené:
 - řádkový prostor (= podprostor \mathbb{K}^n generovaný řádky A),
 - sloupcový prostor (= podprostor \mathbb{K}^m generovaný sloupci A),
 - jádro (= podprostor \mathbb{K}^n tvořený všemi řešeními soustavy $A\mathbf{x} = \mathbf{0}$), označení: Ker A (kernel).

Pozorování: elementární řádkové úpravy matice nemění řádkový prostor ani jádro.

6 Lineární závislost, báze, dimenze

Soubor (konečná posloupnost) vektorů ($\mathbf{v}_1, \dots, \mathbf{v}_n$) je **lineárně ne- závislý**, pokud z rovnosti $a_1\mathbf{v}_1 + \dots + a_n\mathbf{v} = \mathbf{0}$ plyne $a_1 = a_2 = \dots = a_n = 0$, tj. vektory lze nakombinovat na nulu jen jediným, triviálním způsobem.

(V souboru, narozdíl od množiny, se mohou nějaké vektory opakovat, ale jakmile $\mathbf{v}_i = \mathbf{v}_j$, pak je soubor lineárně závislý.)

- 48. Nekonečný soubor vektorů je lineárně nezávislý, pokud každý konečný podsoubor je lineárně nezávislý. (Co je nekonečný soubor? Jako množina, ale prvky se mohou opakovat, formálně zapisujeme nekonečný soubor $(\mathbf{v}_i)_{i\in I}$, kde I je nekonečná množina "indexů".)
- 49. Příklady lineárně nezávislých souborů:
 - $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ řádky jednotkové matice I_n (čili tzv. **standardní báze** \mathbb{R}^n);

- prvních r řádků matice v odstupňovaném tvaru;
- $(x^i)_{i=0,1,\ldots}$ v $\mathbb{R}[x]$,
- $(1, \sqrt{2})$ v \mathbb{R} jako vektorovém prostoru nad \mathbb{Q} .
- 50. Alternativní, možná intuitivnější popis lineární nezávislosti: $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ je lineárně nezávislý, pokud každé \mathbf{v}_i "něco přidá" k lineárnímu obalu: $\mathbf{v}_i \not\in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n)$ pro každé $i = 1, 2, \dots, n$.
- 51. Definice: Nechť B je soubor vektorů ve vektorovém prostoru V; nazývá se systém generátorů V pokud span(B) = V.

Lineárně nezávislý systém generátorů vektorového prostoru V se jmenuje **báze** prostoru V.

- 52. Příklady: prázdný systém je báze triviálního prostoru $\{\mathbf{0}\}$, $(\mathbf{e}_1, \dots, \mathbf{e}_n)$ je báze \mathbb{K}^n , $(1, x, x^2, \dots)$ je báze $\mathbb{R}[x]$.
- 53. Tvrzení: Minimální systém generátorů (tj. žádný vlastní podsystém už negeneruje celý prostor) je báze. Tudíž z libovolného konečného systému generátorů lze vybrat bázi.
- 54. Věta: každý vektorový prostor má bázi. Důkaz vyžaduje axiom výběru. Dokázali jsme (jen) pro prostory, mající nějaký konečný systém generátorů (říká se jim konečně generované).
- 55. Může jeden vektorový prostor mít různě velké báze? NE!! K důkazu potřebujeme **Steinitzovu větu o výměně**.
- 56. Nejdřív **lemma o výměně:** Je-li $G = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ systém generátorů prostoru $V, \mathbf{w} \in V$ je nějaký vektor, a $\mathbf{w} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + \dots + a_n\mathbf{v}_n$ je nějaké jeho vyjádření pomocí vektorů z G, potom kdykoli $a_i \neq 0$, je také $(\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{w}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n)$ systém generátorů (tj. vektor \mathbf{v}_i s nenulovým koeficientem lze nahradit \mathbf{w}).
- 57. **Steinitzova věta o výměně:** Je-li $N = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m)$ lineárně nezávislý soubor vektorů ve V a $G = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ je systém generátorů V, pak $m \leq n$, a některých m vektorů z G lze nahradit vektory $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m$ tak, že dostaneme opět systém generátorů. [Důkaz indukcí podle m; v indukčním kroku nejdřív dostat do G vektory $\mathbf{w}_1, \dots, \mathbf{w}_{m-1}$, a pak použít lemma o výměně na výsledný systém generátorů a \mathbf{w}_m .]
- 58. Hlavní důsledek: Všechny báze konečně generovaného prostoru jsou konečné a mají stejný počet vektorů. (V libovolném vektorovém prostoru mají všechny báze stejnou mohutnost, to nebudeme dokazovat.)

Dimenze vektorového prostoru V je mohutnost nějaké (a tedy libovolné) báze V.

- 59. Další důsledek Steinitzovy věty: Libovolný lineárně nezávislý systém N v konečně generovaném prostoru V lze doplnit na bázi. [Důkaz: větu použít na N a libovolnou bázi prostoru V v roli G.]
- 60. Odtud: Je-li W podprostor konečně generovaného prostoru V, pak

$$\dim(W) \le \dim(V)$$

(speciálně je W konečně generovaný). Nastane-li rovnost, pak W=V.

- 61. Příklad: jaké jsou podprostory \mathbb{R}^2 ? Musejí mít dimenzi 0 (pak je to $\{\mathbf{0}\}$), 2 (pak je to \mathbb{R}^2), nebo 1, a jednodimenzionální vektorový prostor je tvořen všemi násobky nějakého nenulového vektoru, tedy je to přímka procházející $\mathbf{0}$. Podobně pro \mathbb{R}^3 : přibydou roviny procházející $\mathbf{0}$.
- 62. Pojem: souřadnice vektoru v vzhledem k bázi B, označení $[\mathbf{v}]_B$.

7 Hledání báze, hodnost matice

63. Jak spočítat dimenzi (a najít bázi) prostoru $V = \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$, kde $\mathbf{a}_1, \dots, \mathbf{a}_m$ jsou dané vektory z \mathbb{K}^n ? Napíšeme $\mathbf{a}_1, \dots, \mathbf{a}_m$ jako řádky matice A (pak V je řádkový prostor). Gaussova eliminace je algoritmus na hledání báze: nenulové řádky odstupňovaného tvaru tvoří bázi V.

Hodnost matice A je definována jako dimenze jejího řádkového prostoru, a budeme ji značit rank A.

Hodnost je též rovna počtu nenulových řádků v odstupňovaném tvaru (a tudíž tento počet nezávisí na postupu Gaussovy eliminace, což z algoritmu samotného není zřejmé).

- 64. Elementární řádkové úpravy matice odpovídají jejímu násobení zleva vhodnými čtvercovými regulárními maticemi.
- 65. Co dělá násobení maticí A zleva s řádkovým a sloupcovým prostorem matice B:
 - Řádkový prostor $AB \subset \check{r}$ ádkový prostor B.
 - Je-li $(\mathbf{v}_1, \dots, \mathbf{v}_r)$ nějaká báze sloupcového prostoru B, pak $(A\mathbf{v}_1, \dots, A\mathbf{v}_r)$ generuje sloupcový prostor AB.
- 66. Důsledky:
 - (a) $rank(AB) \leq rank(B)$.
 - (b) Násobení regulární maticí zleva, a speciálně elementární řádkové úpravy, nemění řádkový prostor (a tedy ani hodnost).
 - (c) Násobení regulární maticí zleva, a speciálně elementární řádkové úpravy, nemění dimenzi sloupcového prostoru.

- 67. Věta (jeden z "divů" lineární algebry): hodnost matice je též rovna dimenzi sloupcového prostoru. Důkaz:
 - Pro redukovaný odstupňovaný tvar je vidět.
 - Obecně se použije Gaussova eliminace a (b) a (c) z předchozího bodu.
- 68. Z odstupňovaného tvaru můžeme též najít bázi Ker(A), a zjistit že

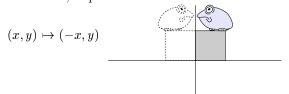
$$\dim(\operatorname{Ker} A) + \operatorname{rank}(A) = n$$

pro každou matici A s n sloupci.

8 Lineární zobrazení

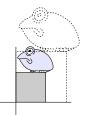
69. Zobrazení $f: U \to V$, kde U a V jsou vektorové prostory (nad týmž tělesem!), je **lineární** pokud $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$ a $f(a\mathbf{u}) = af(\mathbf{u})$, pro každé $\mathbf{u}, \mathbf{v} \in U$ a $a \in \mathbb{K}$.

- 70. Složení lineárních zobrazení je zase lineární zobrazení (pokud je ovšem lze skládat!).
- 71. Příklad (jednoduchý): lineární zobrazení $\mathbb{R}^1 \to \mathbb{R}^1$ je nutně tvaru $x \mapsto ax$, $a \in \mathbb{R}$
- 72. Lineární zobrazení $\mathbb{R}^2 \to \mathbb{R}^2$ jsou už dost zajímavá. Příklady:
 - projekce na osu x,
 - projekce na danou přímku procházející 0,
 - zrcadlení, např.:



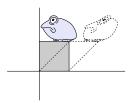
• zvětšení (homotetie), např.

$$(x,y) \mapsto (1.7x, 1.7y)$$



• zkosení, např.:

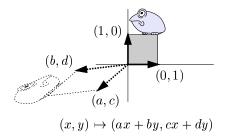
$$(x,y) \mapsto (x+y,y)$$



• rotace kolem 0, např.:

$$(x,y) \mapsto \left(-\frac{1}{2}x - \frac{\sqrt{3}}{2}y, \frac{\sqrt{3}}{2}x - \frac{1}{2}y\right)$$

73. Obecný tvar: f(x,y) = (ax + by, cx + dy), jiná nejsou. Maticový tvar: $f(\mathbf{v}) = A\mathbf{v}$, kde $\mathbf{v} \in \mathbb{R}^2$ je sloupcový vektor (x,y) a A je matice s řádky (a,b), (c,d).



- 74. Tvrzení (Každá volba hodnot na bázi jednoznačně určuje lineární zobrazení) Buďte U,V vektorové prostory a B nějaká báze U. Pro každé zobrazení $f:B\to V$ existuje právě jedno lineární zobrazení $\bar f\colon U\to V$ splňující $\bar f(b)=f(b)$ pro všechna $b\in B$.
- 75. Z toho: víme-li už (geometricky), že např. otočení kolem **0** o úhel τ je lineární zobrazení, můžeme jej snadno vyjádřit; vyjde, že to je $(x, y) \mapsto (x \cos \tau y \sin \tau, x \sin \tau + y \cos \tau)$.
- 76. Příklad: Nechť $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ jsou vrcholy pravidelného n-úhelníka se středem v $\mathbf{0}$, ukažte $\mathbf{s} = \sum_{i=1}^n \mathbf{v}_i = \mathbf{0}$. Elegantní řešení: buď τ otočení kolem $\mathbf{0}$ o úhel $\frac{2\pi}{n}$, potom $\tau(\mathbf{s}) = \mathbf{s}$, a tedy $\mathbf{s} = \mathbf{0}$.
- 77. Libovolné lineární zobrazení $f: \mathbb{R}^n \to \mathbb{R}^m$ má tvar $f(\mathbf{x}) = A\mathbf{x}$, kde \mathbf{x} je sloupcový vektor z \mathbb{R}^n a A je matice $m \times n$; její sloupce jsou obrazy bázových vektorů $\mathbf{e}_1, \ldots, \mathbf{e}_n$. Matice obvyklých geometrických transformací, např. otočení kolem počátku, se objevují např. v počítačové grafice.
- 78. Matice lineárního zobrazení obecně: V prostoru U máme zvolenou jeho bázi B, v prostoru V bázi C, a $f:U \to V$ je lineární zobrazení. Matice f vzhledem k bázím B a C, označení $[f]_{B,C}$, je matice typu $\dim(V) \times \dim(U)$, jejíž j-tý sloupec je $[f(\mathbf{u}_j)]_C$, tj. souřadnice obrazu j-tého vektoru z B vzhledem k bázi C. Pro každé $\mathbf{u} \in U$ platí $[f(\mathbf{u})]_C = [f]_{B,C}[\mathbf{u}]_B$.
- 79. Skládání lineárních zobrazení a násobení matic: Jsou-li V_1, V_2, V_3 vektorové prostory a B_i je nějaká báze $V_i, f: V_2 \to V_1$ je lineární zobrazení s maticí A vzhledem k bázím B_2 a B_1 , a $g: V_3 \to V_2$ je lineární zobrazení s maticí B vzhledem k bázím B_3 a B_2 , pak $f \circ g: V_3 \to V_1$ má matici AB

- vzhledem k bázím B_3 a B_1 . V symbolech: $[f \circ g]_{B_3,B_1} = [f]_{B_2,B_1}[g]_{B_3,B_2}$. Důkaz z asociativity násobení matic: Buď $\mathbf{v} \in V_3$, \mathbf{x} vektor jeho souřadnic, pak $g(\mathbf{v})$ má souřadnice $B\mathbf{x}$ a $f(g(\mathbf{x}))$ souřadnice $A(B\mathbf{x}) = (AB)\mathbf{x}$.
- 80. Příklad: násobení matic rotací kolem počátku v \mathbb{R}^2 dává součtové vzorce pro sinus a kosinus.
- 81. Jsou-li B a C dvě báze prostoru V, potom matice identického zobrazení id: $V \to V$ vzhledem k bázím B a C se nazývá **matice přechodu** od B k C. Je-li \mathbf{x} vektor souřadnic nějakého $\mathbf{v} \in V$ vzhledem k bázi B, potom souřadnice \mathbf{v} v bázi C jsou dány vektorem $A\mathbf{x}$, kde A je matice přechodu od B k C.
- 82. Co to znamená že vektorové prostory V a W jsou "stejné"? Existuje mezi nimi **isomorfismus** $f\colon V\to W$, což je lineární zobrazení, k němuž existuje inverzní zobrazení a to je též lineární (což je právě když f je lineární, prosté a na). Isomorfismus je něco jako přejmenování vektorů: vektory v isomorfních prostorech mohou "vypadat" jinak, ale "chovají se" naprosto stejně.
- 83. Isomorfismus zobrazuje bázi na bázi, a tudíž zachovává dimenzi.
- 84. Tvrzení (n-dimenzionální vektorový prostor nad $\mathbb K$ je "jen jeden"): každý n-dimenzionální vektorový prostor V nad $\mathbb K$ je isomorfní $\mathbb K^n$.

Důkaz: zvol bázi V, isomorfismus přiřazuje vektoru $\mathbf{v} \in V$ jeho souřadnice v té bázi. (Poznámka: mnoho isomorfismů = mnoho "možných pohledů" na daný vektorový prostor!)

- 85. Je-li $\dim(U) = \dim(V) = n$, $f: U \to V$ je lineární, a A je matice f vzhledem k nějakým bázím, potom f je isomorfismus, právě když A je regulární. (Odtud jiný důkaz věty o inverzní matici z bodu 22).
- 86. Afinní podprostory: Podmnožina F vektorového prostoru V, která je buď prázdná, nebo tvaru $F = \mathbf{x} + U = \{\mathbf{x} + \mathbf{u} : \mathbf{u} \in U\}$, kde U je (vektorový) podprostor V, se nazývá **afinní podprostor** (též lineární množina nebo lineál) ve V.
- 87. Platí $U = \{\mathbf{u} \mathbf{v} : \mathbf{u}, \mathbf{v} \in F\}$, a tedy F určuje U. **Dimenzi** F definujeme jako $\dim(U)$. Např. obecné přímky a roviny v \mathbb{R}^3 jsou afinní podprostory. Terminologie: 1-dimenzionální afinní podprostor se nazývá **přímka**, 2-dimenzionální **rovina**, (n-1)-dimenzionální afinní podprostor n-dimenzionálního prostoru se jmenuje **nadrovina**.
- 88. Je-li $f: U \to V$ lineární zobrazení a $\mathbf{b} \in V$ daný vektor, potom $f^{-1}(\mathbf{b})$ je afinní podprostor U; je-li neprázdný, má tvar $\mathbf{x} + \mathrm{Ker}(f)$, kde \mathbf{x} je nějaký (libovolný) vektor splňující $f(\mathbf{x}) = \mathbf{b}$.
- 89. Totéž v řeči matic: množina všech řešení soustavy $A\mathbf{x} = \mathbf{b}$, kde A je $m \times n$ matice a \mathbf{b} je m-složkový vektor, je buď prázdná, anebo má tvar $\mathbf{x}_0 + L$, kde \mathbf{x}_0 je nějaké libovolné řešení soustavy $A\mathbf{x} = \mathbf{b}$ a L je množina

všech řešení **homogenní** soustavy $A\mathbf{x} = \mathbf{0}$. Hledání všech řešení soustavy $A\mathbf{x} = \mathbf{b}$: najdeme jedno řešení \mathbf{x}_0 (pokud existuje) a nějakou bázi pro prostor řešení homogenní soustavy $A\mathbf{x} = \mathbf{0}$, tj. Ker(A).

- 90. Shrnutí toho, co zatím víme o řešení soustavy lineárních rovnic $A\mathbf{x} = \mathbf{b}$, a různé pohledy na to:
 - Pohled vektorověprostorový: je b v podprostoru generovaném sloupci
 A?
 - Pohled geometrický: průnik nadrovin v \mathbb{K}^n .
 - Pohled lineárnězobrazeňový: vzor vektoru **b** při lineárním zobrazení $\mathbf{x} \mapsto A\mathbf{x}$, řešení je afinní podprostor \mathbb{K}^n .

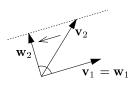
9 Prostory se skalárním součinem

- 91. (Standardní) operace **skalárního součinu** na \mathbb{R}^n : dvojici vektorů \mathbf{x}, \mathbf{y} přiřazuje číslo $\langle \mathbf{x} | \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$.
- 92. (Euklidovská) délka vektoru **x** (též zvaná **norma**):

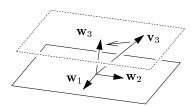
$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

- 93. Geometrická interpretace: $\langle \mathbf{x} | \mathbf{y} \rangle = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos \varphi$, kde φ je úhel mezi vektory \mathbf{x} a \mathbf{y} .
- 94. V "čistém" vektorovém prostoru nemáme pojmy jako "délka" a "úhel". Přidáním skalárního součinu je tam můžeme elegantně zavést.
- 95. **Prostor se skalárním součinem** je vektorový prostor V nad \mathbb{R} nebo nad \mathbb{C} plus zobrazení $V \times V \to \mathbb{R}$ (nebo $\to \mathbb{C}$), zvané **skalární součin**, označení $\langle \mathbf{u} | \mathbf{v} \rangle$ (není v literatuře jednotné, též $\langle \mathbf{u}, \mathbf{v} \rangle$, $\mathbf{u} \cdot \mathbf{v}$ a pod.). Axiomy:
 - (PD) $\langle \mathbf{v} | \mathbf{v} \rangle \ge 0$, rovnost pouze pro $\mathbf{v} = \mathbf{0}$,
 - (L1) $\langle a\mathbf{u}|\mathbf{v}\rangle = a\langle \mathbf{u}|\mathbf{v}\rangle$ (pro a reálné či komplexní číslo),
 - (L2) $\langle \mathbf{u} + \mathbf{v} | \mathbf{w} \rangle = \langle \mathbf{u} | \mathbf{w} \rangle + \langle \mathbf{v} | \mathbf{w} \rangle,$
 - $(k) \qquad \langle \mathbf{v} | \mathbf{u} \rangle = \overline{\langle \mathbf{u} | \mathbf{v} \rangle} \text{ (tedy } \langle \mathbf{v} | \mathbf{u} \rangle = \langle \mathbf{u} | \mathbf{v} \rangle \text{ v reálném případě)}.$
- 96. Standardní skalární součin v \mathbb{R}^n je nejobvyklejší, ale není to jediná možnost pro skalární součin na \mathbb{R}^n . Třeba v rovině můžeme taky definovat $\langle \mathbf{x} | \mathbf{y} \rangle = x_1 y_1 + \frac{1}{3} x_1 y_2 + \frac{1}{3} x_2 y_1 + x_2 y_2$ (to souvisí s pozitivně definitními maticemi, které probereme později).
- 97. Pojem **normy:** norma na vektorovém prostoru V (nad \mathbb{R} nebo nad \mathbb{C}) je zobrazení $V \to \mathbb{R}$, značení $\|\mathbf{v}\|$ a pod.; axiomy: $\|\mathbf{v}\| \ge 0$, rovnost pouze pro $\mathbf{v} = \mathbf{0}$, $\|a\mathbf{v}\| = |a| \cdot \|\mathbf{v}\|$ (a je reálné nebo komplexní číslo), trojúhelníková nerovnost $\|\mathbf{u}\| + \|\mathbf{v}\| \ge \|\mathbf{u} + \mathbf{v}\|$. Norma $\|\mathbf{v}\|$ má význam "délky" vektoru

- v. Skalární součin určuje normu $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v} | \mathbf{v} \rangle}$, ale zdaleka ne každá norma pochází ze skalárního součinu. Ze standardního skalárního součinu na \mathbb{R}^n zmíněného výše dostaneme euklidovskou normu ($\|\mathbf{v}\|$ je právě délka vektoru podle Pythagorovy věty) a euklidovskou vzdálenost (vzdálenost bodů \mathbf{u} a \mathbf{v} je $\|\mathbf{u} \mathbf{v}\|$).
- 98. Cauchyho-Schwarzova nerovnost $\langle \mathbf{u} | \mathbf{v} \rangle \leq \|\mathbf{u}\| \cdot \|\mathbf{v}\|$. Důkaz: uvážit kvadratický mnohočlen $p(t) = \langle \mathbf{u} + t\mathbf{v} | \mathbf{u} + t\mathbf{v} \rangle$, ten musí mít nekladný diskriminant. Geometrický význam, souvislost s kosinovou a Pythagorovou větou. Definice kolmosti vektorů \mathbf{u} a \mathbf{v} : $\langle \mathbf{u} | \mathbf{v} \rangle = \mathbf{0}$.
- 99. Ortogonální systém (nenulové navzájem kolmé vektory), ortonormální systém (navíc jednotkové), jejich lineární nezávislost. Vyjádření vektoru \mathbf{v} v ortonormální bázi $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$: i-tá souřadnice je $\langle \mathbf{v} | \mathbf{b}_i \rangle$. Souřadnice se někdy nazývají Fourierovy koeficienty vektoru \mathbf{v} vzhledem k bázi B.
- 100. **Gramova-Schmidtova ortogonalizace:** algoritmus, který z dané báze $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ udělá ortogonální bázi $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$; lineární obal prvních k vektorů zůstává zachován pro všechna k. Geometrická ilustrace:



2. krok (výpočet w₂)



3. krok (výpočet \mathbf{w}_3)

Věta: Rozšiřitelnost libovolného ortonormálního systému na ortonormální bázi (v konečnědimenzionálním prostoru!). Poznámka: G.-S. ortogonalizace je numericky nestabilní, ale jsou známy stabilní varianty.

101. **Ortogonální doplněk** množiny M:

$$M^{\perp} = \{ \mathbf{v} \in V : \langle \mathbf{v} | \mathbf{x} \rangle = 0 \text{ pro všechna } \mathbf{x} \in M \}.$$

- 102. Ještě jeden pohled na homogenní soustavu lineárních rovnic $A\mathbf{x} = \mathbf{0}$: množina řešení = ortogonální doplněk množiny řádků matice A.
- 103. Vlastnosti ortogonálního doplňku (vše v konečné dimenzi):
 - (i) Je to podprostor.
 - (ii) Je-li $M_1 \subseteq M_2$, pak $M_2^{\perp} \subseteq M_1^{\perp}$.
 - (iii) $M^{\perp} = (\operatorname{span} M)^{\perp}$.
 - (iv) Je-li U podprostor, pak $(U^{\perp})^{\perp} = U$.
 - (v) Platí $\dim(U^{\perp}) = \dim(V) \dim(U)$.
 - (i)-(iii) jsou snadné a (iv),(v) plynou z rozšiřitelnosti ortogonální báze.

- 104. Pojem **ortogonální matice** (hloupá ale tradiční terminologie): čtvercová, $AA^T=I_n$. Pozorování: čtvercová matice má ortonormální sloupce, právě když $A^{-1}=A^T$. Tudíž: má-li čtvercová matice ortonormální řádky, pak má i ortonormální sloupce.
- 105. **Ortogonální projekce** na podprostor W; projekce bodu \mathbf{x} je bod, který je z celého W k \mathbf{x} nejblíže. Jednoznačnost, vyjádření formulí.

10 Determinant

106. **Permutace** je vzájemně jednoznačné zobrazení (bijekce) $X \to X$. Označení $S_n = \text{množina všech permutací množiny } \{1, 2, \dots, n\}$. Množina **inverzí** permutace p:

$$I(p) = \{(i, j) : i < j \text{ a } p(i) > p(j)\}.$$

Interpretace: křížení v dvouřádkovém znázornění p šipkami. **Znaménko permutace** $\operatorname{sgn}(p) = (-1)^{|I(p)|}$.

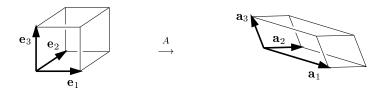
- 107. Tvrzení (skládání permutací a znaménko): ${\rm sgn}(p\circ q)={\rm sgn}(p)\,{\rm sgn}(q).$ Důkaz: obrázek se šipkami.
- 108. **Transpozice** = permutace zaměňující dva prvky. Transpozice má znaménko -1, a každá permutace je složením transpozic.
- 109. Každé čtvercové maticí A teď přiřadíme podivuhodné číslo, zvané **determinant**, takto:

$$\det(A) = \sum_{p \in S_n} \operatorname{sgn}(p) \prod_{i=1}^n a_{i,p(i)}$$

(vzoreček s n! členy).

- 110. Příklad: pro matici 2×2 máme $\det(A) = a_{11}a_{22} a_{12}a_{21}$.
- 111. Determinant trojúhelníkové matice je součinem diagonálních prvků.
- 112. $\det(A^T) = \det(A)$ (důkaz přerovnáním součinu a sumy v definici determinantu).
- 113. Přerovnáním sloupců podle permutace q se determinant násobí sgn(q) (důkaz podobný předchozímu).
 - Důsledek: Záměna dvou řádků mění znaménko determinantu.
 - Důsledek důsledku: Jestliže matice A má dva shodné řádky, pak $\det(A) = 0$.
- 114. Determinant je lineární funkcí každého svého řádku.
- 115. Důsledek: Co dělají elementární řádkové operace (násobení řádku číslem t násobí determinant číslem t, přičtení j-tého řádku k i-tému řádku nemění determinant). Totéž pro sloupce.
- 116. Výpočet det(A) Gaussovou eliminací.
 - Důsledek: čtvercová matice A je regulární, právě když $\det(A) \neq 0$.

- Důsledek: Hodnost matice se nezmění přechodem k většímu tělesu; např. jsou-li nějaké vektory s racionálními složkami lineárně nezávislé nad Q, pak jsou lineárně nezávislé i nad R.
- 117. Geometrický význam determinantu: Lineární zobrazení $\mathbb{R}^n \to \mathbb{R}^n$ odpovídající matici A převádí jednotkovou krychli na rovnoběžnostěn objemu $|\det(A)|$:



(a plochu či objem obecné množiny mění v poměru 1 : $|\det(A)|$). Neformální zdůvodnění.

- 118. Poznámka: Znaménko determinantu je dáno orientací obrazu standardní báze. Pro regulární $n \times n$ matice A, B platí $\operatorname{sgn}(\det(A)) = \operatorname{sgn}(\det(B))$, právě když se dají propojit "spojitou cestou" z regulárních matic.
- 119. Věta (o násobení determinantů): $\det(AB) = \det(A) \det(B)$. Důkaz: pro signulární A snadné, regulární A můžeme pomocí Gaussovy eliminace vyjádřit jako součin elemenátních matic (odpovídajících řádkovým úpravám), a tedy násobení A odpovídá posloupnosti elementárních řádkových úprav matice B. Důsledek věty: $\det(A^{-1}) = \det(A)^{-1}$.
- 120. Rozvoj determinantu podle i-tého řádku:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}),$$

kde A_{ij} označuje matici vzniklou z A vynecháním i-tého řádku a j-tého sloupce. Důkaz: Podle linearity determinantu jako funkce řádku stačí ověřit pro případ, kdy i-tý řádek je vektor \mathbf{e}_i standardní báze.

- 121. Vzorec pro inverzní matici k dané regulární matici A: na místě (i, j) je $(-1)^{i+j} \det(A_{ji})/\det(A)$ (znovu dokazuje existenci inverzní matice).
- 122. Cramerovo pravidlo: Je-li A čtvercová regulární matice, pak (jediné) řešení soustavy Ax = b má i-tou složku rovnou det(A_{i→b})/det(A), kde čtvercová matice A_{i→b} vznikne z A nahrazením i-tého sloupce vektorem b. Zcela nepraktické pro výpočet, ale užitečné pro odvození vlastností řešení (a též ukazuje, že determinant vzniká přirozeně při řešení soustavy lineárních rovnic).

11 Vlastní čísla

- 123. Vlastní čísla souvisejí s mnoha otázkami v geometrii (např. jak vypadají isometrie euklidovského prostoru), ve fyzice (jak zní zvon), v teorii grafů (jak dobrý je daný graf jako schéma telefoního propojení), atd.
- 124. My se k vlastním číslům teď dostaneme přes vyšetřování struktury endo-morfismů, tj. lineárních zobrazení vektorového prostoru V do sebe. Všimněme si, že pro zobrazení $X \to X$ vzniká řada otázek, které pro obecné zobrazení $X \to Y$ nemají smysl, například o pevných bodech a iteracích. Takové otázky pro lineární zobrazení se řeší právě pomocí vlastních čísel.
- 125. Uvažujeme lineární zobrazení $f: V \to V$, V konečnědimenzionalní, chceme najít bázi $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ tak, aby matice f vzhledem k ní byla "jednoduchá". Zde je podstatné, že máme jen jednu bázi ve V! (Doporučeno k rozmyšlení: Je-li $f: V \to V$ lineární zobrazení hodnosti r, pak lze zvolit dvě báze V tak, že matice f vzhledem k nim je matice I_r doplněná dole a zprava nulami.)
- 126. Připomenutí: **matice přechodu** od báze $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ k bázi $B' = (\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n)$ má v j-tém sloupci souřadnice \mathbf{v}_j v bázi B'. Tvrzení: Matice přechodu od B' k B je T^{-1} . Důkaz: přímým výpočtem, nebo pomocí isomorfismů s \mathbb{K}^n .
- 127. Tudíž, je-li A matice zobrazení $f\colon V\to V$ vzhledem k bázi B, pak matice f vzhledem k bázi B' je TAT^{-1} , kde T je matice přechodu od B k B'. Čtvercové matice A a A' se nazývají **podobné**, pokud $A'=TAT^{-1}$ pro nějakou regulární matici T.
- 128. Náš cíl v řeči matic: k dané čtvercové matici A najít podobnou matici A' v "jednoduchém" tvaru (uvidíme, že často se poštěstí A' diagonální, i když ne vždycky). Kdo nemá rád lineární zobrazení, může toto vzít jako výchozí bod.
- 129. Diagonální tvar je například dobrý k rychlému výpočtu mocnin matice (tj. iterací lineárního zobrazení), a je z něj též vidět, jak se iterace budou chovat. Protože: je-li $A = TDT^{-1}$ pro D diagonální, pak $A^k = TD^kT^{-1}$, a D^k má na diagonále k-té mocniny prvků diagonály D.
- 130. Varování: Elementární řádkové úpravy nezachovávají podobnost matic! Teď musíme matice upravovat mnohem opatrněji!!
- 131. Co dělá lineární zobrazení $\mathbb{R}^n \to \mathbb{R}^n$ s diagonální maticí? Natahuje či zkracuje, a případně zrcadlí, ve směru každé souřadnicové osy. Pro diagonalizaci matice obecného zobrazení potřebujeme "správné osy", v jejichž směrech ono zobrazení natahuje či zkracuje, ale zachovává směr. To vede k definici vlastních čísel a vektorů.

Je-li $f: V \to V$ lineární zobrazení, kde V je vektorový prostor nad tělesem \mathbb{K} , pak číslo $\lambda \in \mathbb{K}$ se nazývá **vlastní číslo** zobrazení f, právě když existuje nenulový vektor $\mathbf{v} \in V$ takový, že $f(\mathbf{v}) = \lambda \mathbf{v}$. **Vlastní vektor** příslušný k λ je každé \mathbf{v} splňující $f(\mathbf{v}) = \lambda \mathbf{v}$, tedy i $\mathbf{0}$.

Poznámky.

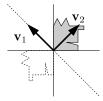
- Tedy ${\bf v}$ je ten "dobrý směr", v němž f účinkuje jako násobení číslem λ .
- Je-li \mathbf{v} vlastní vektor a $t \in \mathbb{K}$ je nenulové, pak též $t\mathbf{v}$ je vlastní vektor.
- Pozor: \mathbf{v} nesmí být $\mathbf{0}$, ale λ může být 0!
- Vlastní vektor v generuje 1-dimenzionální invariantní podprostor. Obecně, podprostor W prostoru V se nazývá invariantní podprostor zobrazení f, pokud $f(W) \subseteq W$.
- 132. Pro čtvercovou matici A jsou vlastní čísla a vlastní vektory definovány jako pro lineární zobrazení určené A. Explicitně:

Je-li A čtvercová matice nad tělesem \mathbb{K} , potom číslo $\lambda \in \mathbb{K}$ se nazývá **vlastní číslo** matice A, pokud existuje vektor $\mathbf{v} \neq \mathbf{0}$ splňující rovnici

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

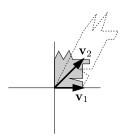
Opět, zapřisáhlí odpůrci lineárních zobrazení se mohou spokojit s touto maticovou definicí vlastních čísel.

- 133. Příklady, co se může dít v rovině:
 - Matice $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, zrcadlení podle přímky y = -x:



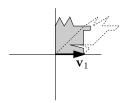
Vlastní čísla 1 (vlastní vektor $\mathbf{v}_1 = (-1,1)$) a -1 ($\mathbf{v}_2 = (1,1)$), ($\mathbf{v}_1, \mathbf{v}_2$) tvoří bázi, a zobrazení má vzhledem k ní diagonální matici $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

• Matice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, zkosení a roztažení:



Vlastní čísla 1 ($\mathbf{v}_1 = (1,0)$) a 2 ($\mathbf{v}_2 = (1,1)$), ($\mathbf{v}_1, \mathbf{v}_2$) zase tvoří bázi, a zobrazení má vzhledem k ní diagonální matici $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

- Otočení kolem počátku o úhel α : Pokud α není násobkem π , nemá žádná (reálná) vlastní čísla a matice není podobná žádné diagonální matici. Ale pokud povolíme komplexní čísla, diagonalizovat lze!
- Matice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, zkosení:



Jediné vlastní číslo 1 a jediný vlastní vektor (1,0) (až na skalární násobek), nelze diagonalizovat, ani komplexní čísla nepomůžou.

134. Dva exotičtější příklady:

- V= prostor všech reálných funkcí na [0,1] majících spojité derivace všech řádů; operátor derivace $D:V\to V,\ f\mapsto f'$, je lineární zobrazení. Každé $\lambda\in\mathbb{R}$ je vlastním číslem, příslušný vlastní vektor je funkce $x\mapsto e^{\lambda x}$. Důležité při řešení lineárních diferenciálních rovnic s konstantními koeficienty.
- V= prostor všech nekonečných reálných posloupností (y_0,y_1,y_2,\ldots) splňujících $y_{n+2}=y_{n+1}+y_n$ pro všechna $n=0,1,\ldots$ (jako rekurence pro Fibonacciho čísla). $P:V\to V$ je operátor posunutí doleva, $(y_0,y_1,y_2,\ldots)\mapsto (y_1,y_2,y_3,\ldots)$. Vlastní vektory jsou zjevně násobky posloupnosti tvaru $(\lambda^0,\lambda^1,\lambda^2,\ldots)$, ptáme se, pro jaká λ je taková posloupnost ve V. Z toho vyjdou 2 vlastní čísla $\lambda_{1,2}=(1\pm\sqrt{5})/2$.
- 135. Pozorování: Buď $f:V\to V$ lineární. Báze, vzhledem k níž má f diagonální matici, existuje právě když existuje báze složená z vlastních vektorů. Příslušná diagonální matice má na diagonále právě vlastní čísla f.
- 136. Tvrzení: Jsou-li $\lambda_1, \ldots, \lambda_k$ navzájem různá vlastní čísla zobrazení f (či matice A), a \mathbf{v}_i je nějaký vlastní vektor příslusný λ_i , potom $\mathbf{v}_1, \ldots, \mathbf{v}_k$ jsou lineárně nezavislé. Důkaz indukcí podle k.
- 137. Důsledek: Je-li A matice typu $n \times n$ a má-li n navzájem různých vlastních čísel, pak je diagonalizovatelná. (Obrácená implikace neplatí!)

- 138. To je jednoduchá postačující podmínka pro diagonalizovatelnost. Jiná, kterou dokážeme časem, praví, že každá *symetrická* čtvercová matice je diagonalizovatená.
- 139. Nyní vyjádříme vlastní čísla matice jako kořeny mnohočlenu. Všimneme si, že pro pevné λ je $A\mathbf{v} = \lambda \mathbf{v}$ homogenní soustavou n rovnic o n neznámých složek vektoru \mathbf{v} . Matice této soustavy je $A \lambda I_n$, a proto λ je vlastní číslo, právě když je $A \lambda I_n$ singulární, neboli právě když $\det(A \lambda I_n) = 0$.

Charakteristický mnohočlen čtvercové matice A definujeme jako $p_A(t) = \det(A - tI_n)$, kde t je proměnná.

Podle definice determinantu je to skutečně mnohočlen, a má stupeň přesně n. Vlastní čísla A jsou právě jeho kořeny.

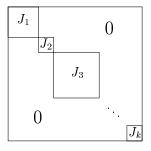
- 140. Jsou-li A a B podobné matice, pak $p_A(t) = p_B(t)$, a tudíž A a B mají tatáž vlastní čísla. Můžeme tedy mluvit i o charakteristickém mnohočlenu $p_f(t)$ lineárního zobrazení $f: V \to V$ na prostoru konečné dimenze.
- 141. Jak hledat vlastní čísla dané matice, a jak charakteristický mnohočlen:
 - "Ručně:" můžeme počítat $\det(A tI_n)$ eliminací, s t ovšem musíme záchazet jako s neznámou, takže pracujeme s maticemi, jejichž prvky jsou mnohočleny v proměnné t (a ne jen čísla jako obvykle). Gaussovu eliminaci je třeba pozměnit tak, aby nepoužívala dělení! V jednoduchých případech můžeme tak najít $p_A(t)$.
 - $p_A(t)$ lze též hledat vhodnými úpravami matice A zachovávajícími podobnost. Matice se převede na tvar, v němž je $p_A(t)$ "vidět". Viz např. učebnice numerické matematiky. Kořeny $p_A(t)$ se hledají obecně numerickými metodami.
 - Ve "skutečných" aplikacích, kdy je třeba najít vlastní čísla např. matic 1000×1000, se vlastní čísla zjišťují jinými (hlavně iterativními) postupy, které vůbec nepočítají charakteristický mnohočlen (například tzv. *QR algoritmem*).
 - Důležitá poznámka: Stanovení vlastních čísel je výpočetně "dobře zvládnutelná" úloha (existují polynomiální a prakticky rozumně efektivní, i když komplikované, algoritmy), narozdíl od těžkých problémů (jako třeba obarvení grafu a jiných NP-úplných úloh). Vlastních čísel se někdy používá v algoritmech pro přibližné řešení některých takových těžkých úloh.
- 142. Důležité koeficienty charakteristického mnohočlenu. Pišme

$$p_A(t) = (-1)^n t^n + c_{n-1} t^{n-1} + \dots + c_1 t + c_0.$$

Potom, jak se dá vidět z definice determinantu, $c_0 = \det(A)$ a $c_{n-1} = (-1)^{n-1}$. trace(A), kde číslu trace $(A) = a_{11} + a_{22} + \cdots + a_{nn}$ se říká **stopa** matice A. Tedy determinanty i stopy podobných matic se rovnají (což

se dá snadno vidět i jinak), a můžeme mluvit o determinantu či stopě lineárního zobrazení $f: V \to V$.

- 143. *Připomenutí o mnohočlenech*. **Základní věta algebry:** Každý mnohočlen stupně aspoň 1 s reálnými či komplexními koeficienty má aspoň jeden komplexní kořen (poměrně těžké, zde bez důkazu). Má-li p(x) kořen α , pak $p(x) = (x \alpha)q(x)$ pro nějaký mnohočlen q(x) (tohle je pravda nad každým tělesem a je to snadné). Důsledek (indukcí): Mnohočlen p(x) stupně n s reálnými či komplexními koeficienty lze napsat ve tvaru $p(x) = a_n(x \alpha_1)(x \alpha_2) \cdots (x \alpha_n)$, kde $\alpha_1, \ldots, \alpha_n$ jsou komplexní čísla. Jiný způsob zápisu: $p(x) = a_n(x \beta_1)^{r_1}(x \beta_2)^{r_2} \cdots (x \beta_k)^{r_k}$, kde β_1, \ldots, β_k jsou navzájem různá komplexní čísla a $r_1 + r_2 + \ldots + r_k = n$. Zde r_i se nazývá **násobnost** kořene β_i .
- 144. Poznámka: Je-li číslo λ kořenem mnohočlenu $p_A(t)$ násobnosti r, říkáme, že λ je vlastním číslem matice A algebraické násobnosti r (speciálně, není-li λ vůbec vlastní číslo, má algebraickou násobnost 0). Jestliže A lze diagonalizovat, pak algebraická násobnost λ udává, kolikrát se λ opakuje na diagonále v diagonálním tvaru.
- 145. Nad komplexními čísly můžeme charakteristický mnohočlen rozložit na součin lineárních činitelů: $p_A(t) = (-1)^n (t \lambda_1)(t \lambda_2) \cdots (t \lambda_n)$. Potom máme $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ a $\operatorname{trace}(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$ (každé vlastní číslo bereme s jeho algebraickou násobností). Pro diagonální (či diagonalizovatelné) matice je to vidět přímo.
- 146. Matice, které nelze diagonalizovat: nemají bázi z vlastních vektorů, musí mít nutně nějaké násobné vlastní číslo λ a dimenze řešení soustavy $(A \lambda I_n)\mathbf{x} = 0$ je menší než algebraická násobnost λ .
- 147. Věta (**Jordanův normální tvar**): Buď A komplexní matice typu $n \times n$. Pak existuje matice J podobná A, tzv. Jordanův normalni tvar A, následujícího tvaru:



kde J_1, J_2, \ldots, J_k jsou tzv. **Jordanovy buňky**, J_i je typu $n_i \times n_i$ ($n_1 + 1$)

 $n_2 + \cdots + n_k = n$) a vypadá takhle:

$$J_i = \left(egin{array}{ccccccc} \lambda_i & 1 & 0 & 0 & 0 & \dots & 0 \ 0 & \lambda_i & 1 & 0 & 0 & \dots & 0 \ 0 & 0 & \lambda_i & 1 & 0 & \dots & 0 \ & & & dots & & & & \ 0 & 0 & 0 & 0 & \dots & \lambda_i & 1 \ 0 & 0 & 0 & 0 & \dots & 0 & \lambda_i \end{array}
ight).$$

Ta λ_i nemusí být navzájem různá; celkově se na diagonále matice J objeví každé vlastní číslo matice A tolikrát, kolik je jeho algebraická násobnost. Speciálně, pro diagonalizovatelnou matici A jsou všechna $n_i=1$. Dále, J je určena jednoznačně až na přerovnání těch J_i , takže soubor $(\lambda_1, n_1), \ldots, (\lambda_k, n_k)$ jednoznačně reprezentuje třídu ekvivalence podobných matic. Zdůrazněme, že podobnost matic se zde bere nad tělesem komplexních čísel, i kdyby všechny prvky výchozí matice A byly reálné. Větu nebudeme dokazovat (důkaz pracný).

- 148. Jordanovy buňky velikosti větší než 1×1 jsou to, co "zabraňuje diagonalizaci". Z jistého hlediska jsou "vzácné", např. pro náhodně generovanou matici A se vyskytnou s malou pravděpodobností, ale je řada přirozených příkladů. Třeba: V vektorový prostor mnohočlenů stupně nejvýš 3, $D:V\to V$ zobrazení derivace. Matice je podobná Jordanově buňce 4×4 s vlastním číslem 0 na diagonále.
- 149. Definice: Buď V reálný vektorový prostor se skalárním součinem. Lineární zobrazení $f: V \to V$ se nazývá **ortogonální**, pokud zachovává skalární součin, tj. pokud $\langle f(\mathbf{u}) | f(\mathbf{v}) \rangle = \langle \mathbf{u} | \mathbf{v} \rangle$ pro každé $\mathbf{u}, \mathbf{v} \in V$.
- 150. Tvrzení (ortogonální zobrazení a ortogonální matice): Lineární zobrazení $f: V \to V$, kde V je konečnědimenzionální reálný vektorový prostor se skalárním součinem, je ortogonální, právě když jeho matice vzhledem k nějaké ortonormální bázi je ortogonální (tj. $AA^T = I_n$). V důkazu se použije lemátko: Jsou-li A a B matice typu $n \times n$ a platí-li $\mathbf{x}^T A \mathbf{y} = \mathbf{x}^T B \mathbf{y}$ pro každé dva vektory $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, pak A = B.
- 151. Poznámka: Analogické pojmy a výsledky existují i pro komplexní případ, mluví se o *unitárních* zobrazeních a maticích.
- 152. Poznámka fyzikálně mechanická: Ortogonální zobrazení zjevně zachovává též délky, $||f(\mathbf{v})|| = ||\mathbf{v}||$, a pro případ prostoru \mathbb{R}^n se standardním skalárním součinem je to tedy **isometrie** fixující počátek souřadnic. Dá se dokonce ukázat, a není to příliš těžké, že každá isometrie $f: \mathbb{R}^n \to \mathbb{R}^n$ (tj. zobrazení splňující $||f(\mathbf{u}) f(\mathbf{v})|| = ||\mathbf{u} \mathbf{v}||$ pro každé $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$), pro niž $f(\mathbf{0}) = \mathbf{0}$, musí být lineární, a tedy je to ortogonální zobrazení. Proto pohyb tuhých těles například v \mathbb{R}^3 se popisuje pomocí ortogonálních matic.
- 153. Teď s pomocí ortogonálních matic ukážeme dříve slíbené tvrzení, že symetrické matice jsou diagonalizovatelné, a ještě trochu víc. Věta: Každá

155.

symetrická reálná matice A typu $n \times n$ má všechna vlastní čísla reálná, a existuje (reálná) ortogonální matice T taková, že TAT^{-1} je diagonální.

154. Hlavní kroky důkazu:

- Každé vlastní číslo je reálné: počítat dvěma způsoby $\overline{\mathbf{v}}^T A \mathbf{v}$, kde \mathbf{v} je nějaký (možná komplexní) vlastní vektor.
- Zbytek indukcí podle n, v indukčním kroku vzít nějaký jednotkový vlastní vektor **v** jako první sloupec a doplnit na ortogonální matici S, uvážit, jak vypadá $SAS^{-1} = SAS^{T}$.

12 Pozitivně definitní matice

 $Symetrick\acute{a}$ realná matice A typu $n \times n$ se nazývá

- pozitivně definitní, pokud pro všechna nenulová $\mathbf{x} \in \mathbb{R}^n$ platí $\mathbf{x}^T A \mathbf{x} > 0$, a
- pozitivně semidefinitní, pokud pro všechna $\mathbf{x} \in \mathbb{R}^n$ platí $\mathbf{x}^T A \mathbf{x} > 0$.

Pozitivně definitní matice jsou jistá analogie kladných čísel (asi nejlepší analogie, jaká se dá pro matice definovat).

156. Tvrzení: Pro čtvercovou reálnou symetrickou matici A je ekvivalentní

- (i) A je pozitivně semidefinitní.
- (ii) Všechna vlastní čísla A jsou nezáporná.
- (iii) Existuje matice U taková, že $U^TU = A$.

Analogie pro pozitivně definitní: vlastní čísla ostře kladná, matice U má hodnost n.

- 157. Poznámky: Ekvivalence (i) \Leftrightarrow (iii) intuitivně říká, že matice je pozitivně semidefinitní právě když má "odmocninu". Matice U v (iii) se dá dokonce vzít horní trojúhelníková, pak dostaneme tzv. $Choleského\ rozklad\ matice\ A$ (tento pojem se používá většinou pro pozitivně definitní matice).
- 158. Poznámka (další ekvivalentní podmínka pro pozitivní semidefinitnost Jacobiho, bez důkazu): Pro $k=1,2,\ldots,n$ platí $\det(A_k)\geq 0$, kde A_k značí matici vzniklou z A vymazáním posledních n-k řádků a n-k sloupců.
- 159. Pozitivní definitnost v analýze: vystupuje v kritériu pro lokální extrém funkce více proměnných.
- 160. Souvislost s prostory se skalárním součinem: Je-li A pozitivně definitní matice typu $n \times n$, pak předpis $\langle \mathbf{x} | \mathbf{y} \rangle = \mathbf{x}^T A \mathbf{y}$ definuje skalární součin na \mathbb{R}^n (a dokonce všechny možné skalární součiny na \mathbb{R}^n mají tento tvar).

- 161. Důležitá metoda v optimalizaci a jiných algoritmech: semidefinitní programování = hledání maxima lineární funkce přes množinu všech pozitivně semidefinitních matic, jejichž prvky splňují dané lineární rovnice a nerovnosti. Je znám efektivní algoritmus.
- 162. Geometrický příklad (konstrukce z tyčí v euklidovském prostoru): M je daná symetrická reálná matice typu $(n+1)\times(n+1)$. Kdy existují body $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ tak, že $\|\mathbf{x}_i \mathbf{x}_j\| = m_{ij}$, pro všechna i, j? Odpověď: Definujme pomocnou $n \times n$ matici $G, g_{ij} = \frac{1}{2}(m_{0i}^2 + m_{j0}^2 m_{ij}^2)$. Pokud ta \mathbf{x}_i existují a $\mathbf{x}_0 = \mathbf{0}$, pak $g_{ij} = \langle \mathbf{x}_i | \mathbf{x}_j \rangle$. Ona existují, právě když $G = U^T U$ pro nějakou $d \times n$ matici U. Speciálně, pro d = n, ta \mathbf{x}_i existují, právě když G je pozitivně semidefinitní.

13 Kvadratické formy

163. **Kvadratická forma** na \mathbb{R}^n je každá funkce $f: \mathbb{R}^n \to \mathbb{R}$ tvaru

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n a_{ij} x_i x_j$$

(pozor, druhá suma je od i, ne od 1!) pro nějaká čísla $a_{ij} \in \mathbb{R}$. Je to tedy kvadratický mnohočlen, kde každý jednočlen má stupeň 2. Dá se psát v maticovém tvaru $f(\mathbf{x}) = \mathbf{x}^T B \mathbf{x}$, kde B je symetrická **matice kvadratické formy** daná předpisem

$$b_{ij} = \begin{cases} a_{ii} & \text{pro } i = j \\ a_{ij}/2 & \text{pro } i < j \\ a_{ji}/2 & \text{pro } i > j. \end{cases}$$

- 164. Poznámka: Kvadratická forma f je **pozitivně definitní**, pokud $f(\mathbf{x}) > 0$ pro všechna $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, to je jako pro matice. Podobně pozitivně semidefinitní.
- 165. Obecněji, pro vektorový prostor V nad tělesem \mathbb{K} definujeme:
 - Bilineární formu jako každé zobrazení $b: V \times V \to \mathbb{K}$ takové, že $b(a_1\mathbf{u}_1 + a_2\mathbf{u}_2, \mathbf{v}) = a_1b(\mathbf{u}_1, \mathbf{v}) + a_2b(\mathbf{u}_2, \mathbf{v})$ (tj. b je lineární v první složce) a $b(\mathbf{u}, a_1\mathbf{v}_1 + a_2\mathbf{v}_2) = a_1b(\mathbf{u}, \mathbf{v}_1) + a_2b(\mathbf{u}, \mathbf{v}_2)$ (b je lineární ve druhé složce).
 - Kvadratickou formu jako každé zobrazení $f: V \to \mathbb{K}$ dané předpisem $f(\mathbf{v}) = b(\mathbf{v}, \mathbf{v})$ pro nějakou bilineární formu b.

Potom pro danou bázi $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ prostoru V definujeme **matici** \mathbf{B} **kvadratické formy** f předpisem $b_{ij} = \frac{1}{2}(f(\mathbf{v}_i + \mathbf{v}_j) - f(v_i) - f(v_j))$. Pro \mathbb{R}^n a standardní bázi to souhlasí s předchozí definicí.

166. Co když se změní báze? Buď $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ stará báze, $(\mathbf{v}'_1, \dots, \mathbf{v}'_n)$ nová báze a T matice přechodu $(\mathbf{tj}, \mathbf{v}'_1 + t_{2j}\mathbf{v}'_1 + t_{2j}\mathbf{v}'_2 + \dots + t_{nj}\mathbf{v}'_n)$. Pak vyjde

 $B'=S^TBS$, kde $S=T^{-1}$ je matice přechodu obráceně, B je matice kvadratické formy vzhledem ke staré bázi a B' její matice vzhledem k nové bázi. (Pozor, pro lineární zobrazení $V \to V$ to bylo $A'=TAT^{-1}$, tady je to jinak!)

167. Změnou báze bychom chtěli přivést matici kvadratické formy na "pěkný" tvar, podobně jako jsme to dělali pro endomorfismy. Vyjde to mnohem jednodušeji:

Věta (Sylvesterův zákon setrvačnosti kvadratických forem): Pro každou kvadratickou formu f na konečnědimenzionálním reálném vektorovém prostoru existuje báze, vzhledem k níž má f diagonální matici, která má na diagonále pouze jedničky, minus jedničky a nuly. Navíc počet jedniček a počet minus jedniček vyjdou stejně pro každou takovou bázi (odtud "setrvačnost").

- 168. Víceméně totéž v řeči matic: Pro každou symetrickou reálnou matici B existuje regulární matice S (jejíž sloupce jsou navíc navzájem ortogonální), pro niž matice S^TBS je diagonální a má na diagonále pouze +1, -1 a 0. Přitom počet těch +1 a -1 nezávisí na volbě takové S.
- 169. Snadná část důkazu je existence S: Z části o vlastních číslech víme, že existuje ortonormální T taková, že $D = T^TBT$ je diagonální a má na diagonále vlastní čísla B (protože B je reálná symetrická). Zbývá rozložit $D = U^T D_0 U$, kde U je diagonální s odmocninami absolutních hodnot vlastních čísel na diagonále a D_0 je diagonální jako ve větě. Setrvačnost je pracnější.
- 170. Poznámka: Pro pozitivně definitní formy se dostanou na diagonále pouze jedničky, pro pozitivně semidefinitní jen jedničky a nuly.
- 171. Pro n=2 věta ríká, že každá kvadratická forma $f:\mathbb{R}^2\to\mathbb{R}$ se dá lineární transformací roviny převést na právě jeden z následujících typů (na obrázcích jsou jejich grafy):

